[20-Feb-2022 02:14:48 UTC] PHP Fatal error: Uncaught Error: Call to undefined function add_action() in /home/australi/public_html/wp-content/plugins/js_composer/include/autoload/vendors/cf7.php:8 Stack trace: #0 {main} thrown in /home/australi/public_html/wp-content/plugins/js_composer/include/autoload/vendors/cf7.php on line 8 [21-Feb-2022 01:47:50 UTC] PHP Fatal error: Uncaught Error: Call to undefined function add_action() in /home/australi/public_html/wp-content/plugins/js_composer/include/autoload/vendors/woocommerce.php:19 Stack trace: #0 {main} thrown in /home/australi/public_html/wp-content/plugins/js_composer/include/autoload/vendors/woocommerce.php on line 19 [20-Feb-2022 05:33:37 UTC] PHP Fatal error: Uncaught Error: Call to undefined function add_action() in /home/australi/public_html/wp-content/plugins/js_composer/include/autoload/vc-pages/settings-tabs.php:27 Stack trace: #0 {main} thrown in /home/australi/public_html/wp-content/plugins/js_composer/include/autoload/vc-pages/settings-tabs.php on line 27 astrophysics – Australian Science http://australianscience.com.au Independent Initiative for Advancement of Science and Research in Australia Tue, 31 Aug 2021 10:17:42 +0000 en-US hourly 1 Postcard from Spitzer: weather on 2M2228 is hot and cloudy http://australianscience.com.au/space/postcard-from-spitzer-weather-on-2m2228-is-hot-and-cloudy/ http://australianscience.com.au/space/postcard-from-spitzer-weather-on-2m2228-is-hot-and-cloudy/#comments Tue, 05 Mar 2013 00:26:44 +0000 http://www.australianscience.com.au/?p=7440 Long distance weather reports are now a commonality. The report for 2MASSJ22282889-431026 is somewhat unusual.


test

The post Postcard from Spitzer: weather on 2M2228 is hot and cloudy appeared first on Australian Science.

]]>
Long distance weather reports are now a commonality. The report for 2MASSJ22282889-431026 is somewhat unusual. It forecasts wind-driven, planet-sized clouds, with the light varying in time, brightening and dimming about every 90 minutes. The clouds on 2MASSJ22282889-431026 are composed of hot grains of sand, liquid drops of iron, and other exotic compounds. Definitely not the first place to spend a summer holiday.

Not that 2MASSJ22282889-431026 (or 2M2228 as it is known in The Astrophysical Journal Letters) will appear on a travel itinerary anytime soon. For 2M2228 is a brown dwarf, 39.1 light years from earth. Brown dwarves form out of condensing gas, as stars do, but lack the mass to fuse hydrogen atoms and produce energy. Instead, these objects, which some call failed stars, are more similar to gas planets, such as Jupiter and Saturn, with their complex, varied atmospheres. Although brown dwarves are cool relative to other stars, they are actually hot by earthly standards. This particular object is about 600 to 700 degrees Celsius.

The atmosphere of 2M2228

Astronomers using NASA’s Spitzer and Hubble space telescopes have probed the stormy atmosphere of this brown dwarf, creating the most detailed “weather map” yet for this class of cool, star-like orbs. “With Hubble and Spitzer, we were able to look at different atmospheric layers of a brown dwarf, similar to the way doctors use medical imaging techniques to study the different tissues in your body,” said Daniel Apai, the principal investigator of the research at the University of Arizona in Tucson.

But more surprising, the team also found the timing of this change in brightness depended on whether they looked using different wavelengths of infrared light.

This artist’s illustration shows the atmosphere of a brown dwarf called 2MASSJ22282889-431026, which was observed simultaneously by NASA’s Spitzer and Hubble space telescopes. The results were unexpected, revealing offset layers of material as indicated in the diagram. For example, the large, bright patch in the outer layer has shifted to the right in the inner layer. The observations indicate this brown dwarf — a ball of gas that “failed” to become a star — is marked by wind-driven, planet-size clouds. The observations were made using different wavelength of light: Hubble sees infrared light from deeper in the object, while Spitzer sees longer-wavelength infrared light from the outermost surface. Both telescopes watched the brown dwarf as it rotated every 1.4 hours, changing in brightness as brighter or darker patches turned into the visible hemisphere. At each observed wavelength, the timing of the changes in brightness was offset, or out of phase, indicating the shifting layers of material. Image credit: NASA/JPL-Caltech.

These variations are the result of different layers or patches of material swirling around the brown dwarf in windy storms as large as Earth itself. Spitzer and Hubble see different atmospheric layers because certain infrared wavelengths are blocked by vapors of water and methane high up, while other infrared wavelengths emerge from much deeper layers.

The new research is a stepping-stone toward a better understanding not only of brown dwarves, but also of the atmospheres of planets beyond our solar system.

Into the red: the Spitzer space telescope

The Spitzer Space Telescope is the final mission in NASA’s Great Observatories Program – a family of four space-based observatories, each observing the Universe in a different kind of light. The other missions in the program include the visible-light Hubble Space Telescope, Compton Gamma-Ray Observatory, and the Chandra X-Ray Observatory.

The Spitzer Space Telescope consists of a 0.85-meter diameter telescope and three cryogenically-cooled science instruments which perform imaging and spectroscopy in the 3 – 180 micron wavelength range. Since infrared is primarily heat radiation, detectors are most sensitive to infrared light when they are kept extremely cold. Using the latest in large-format detector arrays, Spitzer is able to make observations that are more sensitive than any previous mission. Spitzer’s mission lifetime requirement was 2.5 years, then extended this to 5-years. Spitzer .

Launched on August 25, 2003 Spitzer is now more than 9 years into its mission, and orbits around the sun more than 100-million kilometers behind Earth. It has heated up just a bit – its instruments have warmed up from -271 Celsius to -242 Celsius. This is still way colder than a chunk of ice at 0 Celsius. More importantly, it is still cold enough for some of Spitzer’s infrared detectors to keep on probing the cosmos for at least two more years; the project funding has been extended to 2016.

Spitzer seen against the infrared sky. The band of light is the glowing dust emission from the Milky Way galaxy seen at 100 microns (as seen by the IRAS/COBE missions). Image credit NASA/JPL

Spitzer is the largest infrared telescope ever launched into space. Its highly sensitive instruments allow scientists to peer into cosmic regions that are hidden from optical telescopes, including dusty stellar nurseries, the centres of galaxies, and newly forming planetary systems. Spitzer’s infrared eyes also allows astronomers see cooler objects in space, like brown dwarves, extrasolar planets, giant molecular clouds, and organic molecules that may hold the secret to life on other planets.

Instead of orbiting Earth itself, the observatory trails behind Earth as it orbits the Sun and drifts away from us at about 1/10th of one astronomical unit per year.

This innovative orbit lets nature cool the telescope, allowing the observatory to operate for around 5.5 years using 360 litres of liquid helium coolant. In comparison, Spitzer’s predecessor, the Infrared Astronomical Satellite, used 520 litres of cryogen in only 10 months.

This unique orbital trajectory also keeps the observatory away from much of Earth’s heat, which can reach 250 Kelvin (-23 Celsius) for satellites and spacecraft in more conventional near-Earth orbits.

More scientific duets: the asteroid belt of Vega

Like a gracefully aging rock star Spitzer is reveling in duets. It has also teamed up with the European Space Agency‘s Herschel Space Observatory. Using data from both astronomers have discovered what appears to be a large asteroid belts around the star Vega, the second brightest star in northern night skies.

The data are consistent with the star having an inner, warm belt and outer, cool belt separated by a gap. The discovery of this asteroid belt-like band of debris around Vega makes the star similar to another observed star called Fomalhaut. Again this formation is similar to the asteroid and Kuiper belts in our own solar system.

Astronomers have discovered what appears to be a large asteroid belt around the bright star Vega, as illustrated here at left in brown. The ring of warm, rocky debris was detected using NASA’s Spitzer Space Telescope, and the European Space Agency’s Herschel Space Observatory. In this diagram, the Vega system, which was already known to have a cooler outer belt of comets (orange), is compared to our solar system with its asteroid and Kuiper belts. The relative size of our solar system compared to Vega is illustrated by the small drawing in the middle. On the right, our solar system is scaled up four times. The comparison illustrates that both systems have inner and outer belts with similar proportions. The gap between the inner and outer debris belts in both systems works out to a ratio of about 1-to-10, with the outer belt 10 times farther away from its host star than the inner belt. Astronomers think that the gap in the Vega system may be filled with planets, as is the case in our solar system. Image credit: NASA/JPL-Caltech.

What is maintaining the gap between the warm and cool belts around Vega and Fomalhaut? The results strongly suggest the answer is multiple planets. Our solar system’s asteroid belt, which lies between Mars and Jupiter, is maintained by the gravity of the terrestrial planets and the giant planets, and the outer Kuiper belt is sculpted by the giant planets.

“Our findings (accepted for publication in the Astrophysical Journal) echo recent results showing multiple-planet systems are common beyond our sun,” said Kate Su, an astronomer at the Steward Observatory at the University of Arizona, Tucson.

Vega and Fomalhaut are similar in other ways. Both are about twice the mass of our sun and burn a hotter, bluer color in visible light. Both stars are relatively nearby, at about 25 light-years away. Fomalhaut is thought to be around 400 million years old, but Vega could be closer to its 600 millionth birthday. For comparison our sun is 4,600 million years old. Fomalhaut has a single candidate planet orbiting it, Fomalhaut b, which orbits at the inner edge of its cometary belt.

The Herschel and Spitzer telescopes detected infrared light emitted by warm and cold dust in discrete bands around Vega and Fomalhaut, discovering the new asteroid belt around Vega and confirming the existence of the other belts around both stars. Comets and the collisions of rocky chunks replenish the dust in these bands. The inner belts in these systems cannot be seen in visible light because the glare of their stars outshines them.

It would seem that Spitzer has quite a bit more productive and novel scientific life, including duets, left in it yet.

Cite this article:
Orrman-Rossiter K (2013-03-05 00:26:44). Postcard from Spitzer: weather on 2M2228 is hot and cloudy. Australian Science. Retrieved: May 03, 2024, from http://australianscience.com.au/space/postcard-from-spitzer-weather-on-2m2228-is-hot-and-cloudy/

test

The post Postcard from Spitzer: weather on 2M2228 is hot and cloudy appeared first on Australian Science.

]]>
http://australianscience.com.au/space/postcard-from-spitzer-weather-on-2m2228-is-hot-and-cloudy/feed/ 1
Pioneer anomaly explained? http://australianscience.com.au/space/pioneer-anomaly-explained/ http://australianscience.com.au/space/pioneer-anomaly-explained/#comments Mon, 22 Oct 2012 00:34:26 +0000 http://www.australianscience.com.au/?p=4936 Pioneer 10 and 11 unveiled the solar system during the golden-age of robotic exploration. Their


test

The post Pioneer anomaly explained? appeared first on Australian Science.

]]>
Pioneer 10 and 11 unveiled the solar system during the golden-age of robotic exploration. Their missions were a success; Pioneer 10 threading the asteroid belt to provide our first close view of Jupiter and its moons, Pioneer 11 catapulting past Jupiter and foraying through the plane of Saturn’s rings.

Saturn and its moon Titan imaged by Pioneer 11 in 1979. Photo credit NASA/JPL.

The Pioneers, true to their name, kept travelling – out of the solar system – into space legend. We lost communication with Pioneer 11 in 1995, and with Pioneer 10 in 2003 when it had reached a distance 80 times further than the Earth from the Sun. Some years prior to this, when the probes had traveled only one quarter of this distance, scientists realized both were thousands of kilometres closer to the Sun than expected.

Pioneer 10, articts conception. Image credit NASA/JPL.

Space exploration depends on precise measurements of every factor involved in the mission – particularly distance. Beams of radio waves were sent and bounced off the Pioneer spacecraft to measure the probes’ movement. The distance to the spacecraft and its speed were calculated from the photons’ round trip time and their Doppler shift (the frequency change you hear as an ambulance siren approaches and then recedes from you).

Gas leakage, measurement error or other mundane reasons might explain the Pioneer anomaly. Heat, unevenly radiating off the probes, slowing their voyage, is proposed by Jet Propulsion Lab scientists, in a new Physical Review Letters article, to account for the anomaly. After constructing a finite-element thermal model of the two spacecraft, the authors modeled the effects of thermal recoil forces on Pioneer 10 at various distances from the Sun.

Finite element analysis of thermal radiation from Pioneer 10. Image credit JPL.

A second paper in a sister journal, Physical Review D, proposes a totally different cause and conclusion. Flat (neither expanding nor contracting) background spacetime with a solar system gravitationally isolated from the rest of the Universe is the cornerstone of current theory. The new study extends this theoretical concept, formalizing the description of particles and photons moving in the gravitational field of a localized astronomical system now embedded in an expanding universe.

The proposed changes to the astrophysics theory are mathematically complex, the paper is densely populated with “post-Newtonian cosmological field equations” – the conclusions though are emphatically clear. Terms, proportional to the local expansion of the universe, are missing from the equations of light propagation currently used by space navigation centres for fitting distance and speed observations of satellites and celestial bodies. With this correction the Pioneer anomaly disappears; the photons were moving faster than expected from the theory, the spacecraft were actually travelling the correct speed.

NASA New Horizons space probe. Image credit NASA/JPL.

So which of these two competing papers explains the Pioneer anomaly? Which will solve this nagging problem and be of benefit to future interstellar travel? We may need to wait beyond 2015 to find an answer. With no new Pioneer data, proof will rely on measurement from NASA’s New Horizons mission, launched in 2006 and set to reach Pluto in 2015.

Cite this article:
Orrman-Rossiter K (2012-10-22 00:34:26). Pioneer anomaly explained?. Australian Science. Retrieved: May 03, 2024, from http://australianscience.com.au/space/pioneer-anomaly-explained/

test

The post Pioneer anomaly explained? appeared first on Australian Science.

]]>
http://australianscience.com.au/space/pioneer-anomaly-explained/feed/ 1
Radio quiet, please! http://australianscience.com.au/technology/radio-quiet-please/ http://australianscience.com.au/technology/radio-quiet-please/#comments Fri, 06 Jul 2012 05:28:28 +0000 http://www.australianscience.com.au/?p=3054 Originally conceived over 20 years ago, there’s a project being undertaken by scientists and engineers


test

The post Radio quiet, please! appeared first on Australian Science.

]]>
Originally conceived over 20 years ago, there’s a project being undertaken by scientists and engineers across the whole world to help us all better understand the mysteries of the galaxy and the very beginnings of the Universe. It’s estimated to be completed by around 2024,costing $1.85 billion AUS (€1.5 billion). Once completed, it’s set to be the most complex and technologically advanced machine ever built by humanity. It will use enough optic fibre to wrap twice around the Earth and will need a computer capable of performing 10^18 operations per second – about three million times the number of stars in our galaxy. It will produce over 980 Exabytes of data every day (equivalent to about 15 million 64GB iPods) and to cope with that, it will need to handle data transfer rates over 10 times as high as the current global internet traffic. No, it isn’t a starship. But it might just be the next best thing.

One of the first components of the SKA, constructed in Western Australia. Credit: Dave DeBoer, CSIRO.

The Square Kilometre Array (SKA) is one of the most ambitious scientific projects ever devised, and when completed it will comprise a huge number of telescope antennae which will work as one to form a single radio telescope so powerful that it could detect an airport radar on a planet 50 light years away. The sensitivity of any telescope is defined by the area it uses to collect data. With optical telescopes, this is the size of the mirror, and with radio telescopes it’s typically the size of the dish. The SKA gets its name because when fully constructed, all of the detectors and antennae that make it up will have a combined area of one square kilometre, or one million square metres. To put that properly into perspective, the Green Bank Telescope is currently the largest steerable single dish radio telescope, and its area is just under 8000 square metres.

Being astronomy’s answer to the large hadron collider, the SKA is a staggeringly large international collaboration. I was lucky enough to attend a major meeting regarding the planning of the SKA (the headquarters are to be based here in the UK in Manchester), and the myriad different languages and nationalities represented was impressive to say the least. Over 24 major organisations from countries spanning 5 continents are involved in the project, ranging from universities to industrial engineering companies. New technologies, both software and hardware, are still being developed as a result of this project. Based on the huge data storage and transfer requirements of a machine as complex as the SKA, many of those new technologies are likely to feed straight back into society by offering profound improvements to computing resources like the internet. In fact, as the world’s largest project for sorting and storing data, the SKA is expected to be literally bigger than Google!

The Warkworth antenna in New Zealand – an important part of early SKA science. Credit: Alex Wallace.

The most difficult decision, understandably, has been where precisely to build it. Humanity has an unfortunate tendancy to fill the atmosphere of our planet with noise, bouncing radio waves to and fro and filling the air with radio frequency chatter. A radio telescope array this sensitive needs to be placed somewhere quiet to gain the full benefits, and the most recent decision has been to effectively split the SKA into two components, to be built in Southern Africa and Australia. While this may seem like an odd thing to do, it actually makes perfect sense. The SKA actually has three types of antenna operating at different frequencies. Intended to cover a huge range of radio frequencies (from 70 to 100000 MHz), three types of antenna are needed, because no single technology can actually operate across such a wide range. So the decision was made to build the lowest frequency detectors across Australia, centred at Murchison in outback Western Australia. Murchison is blessed with being one of the few places on our planet which isn’t flooded with FM radio at the low end of the frequency scale. From a radio astronomer’s point of view, it’s the quietest place on Earth.

This is set to be complemented by the higher frequency steerable dishes which are set to be constructed across Africa. Both South Africa and Australia have put extensive efforts into developing the SKA, and Australian-developed technology is still set to be implemented in the African telescopes. This will mean a huge influx to the African astronomical community and numerous African nations won’t lose out on the economic boost from contributing to such a prestigious project. It’s an ideal situation where everyone wins.

All in all, it’s an exciting time to be an astronomer. An epic project like this is likely to attract all manner of researchers from across the world to both continents. Just maybe, it could also finally help us to answer the really big questions, like how the galaxy formed, how the Universe began, and whether or not there’s anyone else out there.

A map of prospective SKA sites. Credit: anzska

test

The post Radio quiet, please! appeared first on Australian Science.

]]>
http://australianscience.com.au/technology/radio-quiet-please/feed/ 2