[20-Feb-2022 02:14:48 UTC] PHP Fatal error: Uncaught Error: Call to undefined function add_action() in /home/australi/public_html/wp-content/plugins/js_composer/include/autoload/vendors/cf7.php:8 Stack trace: #0 {main} thrown in /home/australi/public_html/wp-content/plugins/js_composer/include/autoload/vendors/cf7.php on line 8 [21-Feb-2022 01:47:50 UTC] PHP Fatal error: Uncaught Error: Call to undefined function add_action() in /home/australi/public_html/wp-content/plugins/js_composer/include/autoload/vendors/woocommerce.php:19 Stack trace: #0 {main} thrown in /home/australi/public_html/wp-content/plugins/js_composer/include/autoload/vendors/woocommerce.php on line 19 [20-Feb-2022 05:33:37 UTC] PHP Fatal error: Uncaught Error: Call to undefined function add_action() in /home/australi/public_html/wp-content/plugins/js_composer/include/autoload/vc-pages/settings-tabs.php:27 Stack trace: #0 {main} thrown in /home/australi/public_html/wp-content/plugins/js_composer/include/autoload/vc-pages/settings-tabs.php on line 27 New light on dark matter: space station magnet attracts praise - Australian Science

New light on dark matter: space station magnet attracts praise

qqtyppyd-1365030919
The AMS aboard the ISS. Photo credit NASA.

Nobel prizewinner Samuel Ting, early Thursday morning (March 4, 2:00 AEDT), announced the first results from the Alpha Magnetic Spectrometer (AMS) search for dark matter. The findings, published in Physical Review Letters, provide the most compelling direct evidence to date for the existence of this mysterious matter.

In short, the AMS results have shown an excess of antimatter particles within a certain energy range. The measurements represent 18 months of data from the US$1.5 billion instrument.

The AMS experiment is a collaboration of 56 institutions, across 16 countries, run by the European Organisation for Nuclear Research (CERN). The AMS is a giant magnet and cosmic-ray detector complex fixed to the outside of the International Space Station (ISS).

Dark matter matters

The visible matter in the universe, such as you, me, the stars and planets, adds up to less than 5% of the universe. The other 95% is dark, either dark matter or dark energy. Dark matter can be observed indirectly through its interaction with visible matter but has yet to be directly detected.

Cosmic rays are charged high-energy particles that permeate space. The AMS is designed to study them before they have a chance to interact with Earth’s atmosphere.

ams_rivelatori
Magnet bends in opposite directions charged particles/antiparticles. Transition Radiation Detector (TRD) identifies electrons and positrons among other cosmic-rays. Time-of-Flight System (ToF) warns the sub-detectors of incoming cosmic-rays. Silicon Tracker (Tracker) detects the particle charge sign, separating matter from antimatter. Ring-Imaging Cherenkov Detector (RICH) measures with high precision the velocity of cosmic-rays. Electromagnetic Calorimeter (ECAL) measures energy of incoming electrons, positrons and γ-rays. Anti-Coincidence Counter (ACC) rejects cosmic rays traversing the magnet walls. Tracker Alignment System (TAS) checks the Tracker alignment stability. Star Tracker and GPS defines the position and orientation of the AMS-02 experiment. Electronics transform the signals detected by the various particle detectors into digital information to be analyzed by computers. Diagram credit AMS Collaboration.

An excess of antimatter within the cosmic rays has been observed in two recent experiments – and these were labelled as “tantalising hints

Cite this article:
Orrman-Rossiter K (2013-04-10 00:02:01). New light on dark matter: space station magnet attracts praise. Australian Science. Retrieved: Apr 20, 2024, from http://australianscience.com.au/physics/new-light-on-dark-matter-space-station-magnet-attracts-praise/

1 thought on “New light on dark matter: space station magnet attracts praise

Comments are closed.